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ABSTRACT

This volume contains reports of NASA sponsored studles

in the area of space flight and guidance theory implementation.

The studies are carried on by several industrial companies.
This report covers the perlod from initiation of the studies
until September 30, 1963. The technical supervisor of the

cohtracts is W. E. Miner, Deputy Chief of the Astrodynamics

and Guidance Theory Division, Aero-Astrodynamics Laboratory,

George C. Marshall Space Flight Center.
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on Studies in the Flields of
Space Flight and Guldance Theory

Sponsored by Aero-Astrodynamics Laboratory
of the Marshall Space Flight Center

SUMMARY

This volume contains reports of NASA sponsored studies

in the area of space flight and guidance theory lmplementation.

The studles are carried on by several industrial companies.

This report covers the pPeriod rfrom initiation-of the studies
until September 30, 1963. The technical supervisor of the
contracts is W. E. Miner, Deputy Chief of the Astrodynamics
and Guidance Theory Division of the Aero-Astrodynamics
Laboratory, George C. Marshall Space Flight Center.

INTRODUCTION

This is the first of a series of reports dealing with
the implementation of theory being developed by Astrodynamics
and Guidance Theory Division of Aero-Astrodynamics Laboratory
and the associated contractors.

The term Progress Report No. 1 (2, 3, 4) will be used
for "Progress Reports on Studies in the Fields of Space
Flight and Guidance Theory. The term Implementation Report
will be used for "Implementation Report No. 1 on Studiles in
the Fields of Space Flight and Guldance Theory.'" These terms
will be used for reference to the two companion series of

reports.

Two problems are presented in this report. The first
is that of determining feasibility of adaptive guidance for
lunar orbital rendezvous ("LOR") type missions. ' The second
is that of determining performance data as a basis for
evaluating adaptive guldance in non-catastrophic abort from
LOR type missions. Both works are preliminary and limited
in scope.



Two papers are presented on the study of feasibllity
of adaptive guldance for LOR type missions. The first 1is
by R. S. Polovitch and W. B. Morgan of Boeing Company. The
second paper 1s by Dr. S. Hu of Northrop Corporation. The
problem was arbitrarily defined by MSFC. No attempt was
made to include the performance problem. Rather, the
definition was made so that small maneuvers in yaw were
required. This checked the guidance capability. Boeing
was assigned the problem of launching into a space-fixed
conic. This conic was defined as having circular velocity
of a specified altitude with a 90° path angle (measured
from vertical). It is realized that due to the earth's
obliqueness, this will not define a specified conic. From
the practical point of view, the simplified definition of
the orbit was sufficient. From the point of injection into
the circular orbit, Northrop Corporation developed the
guidance to insertion into the lunar transit. This latter
orbit was defined using the JPL lunar deck. Because of
certain assumptions therein, the resulting lunar transits
do not make up a continuous group. This caused large errors
at the moon while having small errors compared to the defined
end-conditions.

It is planned in the next implementation report to
rework the problem utilizing a newly developed earth-moon
deck and also to elaborate on performance congiderations,.
In addition, various engineering constraints will be considered.
It is also planned to extend the launch window study with a
view toward determining whether or not additional holds on
the launch pad are possible., Improvements in procedures will
be incorporated, especially in the area of curve-fit techniques.
Progress Reports 3 and 4 refer to articles in this area. 1In
these two reports, many ldeas are being checked and "packaged"
for computer use. Lastly, experience alone will greatly
improve the next results.

Two papers are presented on the study of performance data
as a basis for evaluating adaptive guldance for non-catastrophic
abort from LOR type missions. The first paper is by V. V. Moore
and F. G. Bourque of Boeing Company. The second paper on reentry
is by Ann Muzyka and H. Elmore Blanton of Raytheon Company.
These two studies are complementary. The Raytheon study should
define acceptable reentry conditions and maximum and minimum
ranges for free flight through the atmosphere. These reentry
conditions then become the desired end-conditions for the
Boeing work. The parameters to be matched here are path angle
59;, velocity (v), and altitude (y or h). The last parameter

h) has been arbitrarily frozen and will only be opened at




a very late date. Several points of mismatch can be seen

in the work. These will be corrected in future work. It
may be noted that even for preliminary evaluation both papers
should be considered simultaneously. Both papers offer modi-
fications and extensions. Many of these will be followed
for future work. Not clearly stated is the fact that in
many cases return to some specified orbit and a later return
to the earth is possible. This will greatly reduce the size
of the requilred landing area. Future work will expand as
discussed above and then add the full guidance problem.

Future implementation reports will add the efforts of
gseveral other contractors.
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PATH-ADAPTIVE GUIDANCE FOR SATURN V
THREE-~-DIMENSIONAL ASCENT TO ORBIT

by
R. S. Polovitch
W, B, Morgan

/6 SUMMARY A

Pitch and yaw guidance polynomials for the Saturn V vehicle
have been generated. These polynomials are designed to steer the
vehicle into a space-fixed orbit at an altitude of 100 n.mi. The
polynomials are capable of acceptable orbit injection at any time
during a one hour launch window. They also allow for variations in
thrust, specific impulse and weight in any of the stages as well as
perturbations due to winds during Stage 1 flight. AvTHon

grF

INTRODUCTION

, An empirical method of implementing the path adaptive guid-
ance scheme involves the development of steering polynomials. These
polynomials must be able to steer the vehicle toward a predetermined
end condition in an optimum manner,

The purpose of this study is to calculate a set of steering
polynomials capable of acceptable injection into a 100 n.mi. orbit,
These polynomials allow for launch at any time during a one-hour
launch window. Perturbations due to thrust, specific impulse and
weight variations in any of the stages and the effect of winds during
first stage are included in the development of the polynomials.

The assumptions involved in the study are as follows:

1. Saturn V Vehicle

The launch vehicle is a typical three-stage Saturn V. Only
that portion of the third stage required to achieve the proper orbital
conditions is utilized during boost. The remainder of the propellant




is retained for use during insertion into the lunar trajectory.
Vehicle characteristics used in the study are given in the following
table.

Stage 1 Stage 2 Stage 3
Thrust (1lbs) . 7,500,000.(s.1.) 1,000,000. (vac)200,000. (vac)
Liftoff Weight (1bs) 6,000, 000. 1,366,078 . 359,267.
Propellant Weight (1lbs) 4,224,210. 919,011. (minimized)
Specific Impulse (sec) Classified

2. Trajectory Optimization

All of the trajectories used to generate the polynomials
have been optimized for maximum burnout weight.

3. Spaced-fixed Waiting Orbit

The target orbit is a 100 n.mi. circular orbit with an in-
clination of 28.52 degrees. The space-fixed orbit is oriented so
that its nodal line is coincident with the line of nodes of the lunar
plane at the date of launch,

4, Launch Window

A launch window one hour in duration was selected for this
study.
ANALYSIS
The analysis consists of two principal parts:

1. Determination of optimum trajectories which meet the
desired end conditions.,

2. Fitting pitch and yaw steering polynomials which steer
the vehicle along these optimum trajectories.

1, Determination of Optimum Trajectories

A zero 1ift trajectory is flown during Stage 1 flight.
However, during the early portion of the flight a pitch maneuver must
be performed to turn the vehicle from the vertical. This pitch
maneuver, as well as the launch azimuth, must be optimized. No thrust
is applied in the yaw direction during Stage 1. Consequently, except
for perturbations due to oblateness and earth's rotation, the first



stage flight is two-~dimensional.

Upper stage trajectories are optimized by a three-dimen-
sional calculus of variations analysis with an oblate earth model.
The optimization criterion for all phases of the flight is maximum
burnout weight.

The desired cut~off condition corresponds to the level of
energy and angular momentum associated with a 100 n.mi. circular
orbit over a spherical earth, On an oblate earth, this will result
in an orbit whose radius from the center of the earth will vary in
a periodic manner,

Discussion of the optimization of the first stage pitch
maneuver involves several variables which require definition,
These are as follows:

a) Tilt angle (XKp)~This is a measure of the rate at
which the vehicle is turned away from vertical attitude. A pre-
programmed turn is made early in first stage flight with & fol-
lowing the pattern indicated in the following sketch.

=12 skc. t,=35 sec.

dg) dg) . -
The values for tl’ t2, (dt 1 {at /o are fixed. Conse-
quently, the only parameter which affects the '"steepness" of the first
stage flight path and the ensuing first stage burnout conditions is

Xy

b) Launch Azimuth (A )AThe vehicle azimuth at launch is
measured clockwise from north. “For purposes of this study, it is as-
sumed that the pitch plane of the vehicle is always aligned with the
launch azimuth. This eliminates the need for considering any roll
during the vertical rise portion of the trajectories,




c) Co-nodal time ~~At the instant of 1iftoff the launch
azimuth and latitude define a hypothetical orbit plane. If an azi-
muth of 90° is used, there is one time each day when the line of
nodes of the instantaneously established plane will be coincident
with the line of nodes of the target orbit. This time is defined
as the co-nodal time.

d) Launch time (& t,)~This parameter is a measure of the
location within the launch window of the launch site at the instant
of 1liftoff. For this study the space fixed target orbit has an in-.
clination equal to the launch latitude. This assumption places the
launch site in the plane of the target orbit only once each day.

This time corresponds to the co-nodal time defined previously and
establishes an unique point, i.e., A‘ﬁ,= 0. Early and late launches

are respectively characterized by negative and positive values of
Atp. In the following sketch, At is depicted as an angle. This
is the angle through which the earth rotates between the time of
vehicle liftoff and the co-nodal time.
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e) Plumbline coordinate system ~~This coordinate system has

its origin at the center of the earth. The y, axis is parallel to the
gravity gradient which passes through the launch site. The x, axis is
parallel to the launch azimuth and the 2z axis is perpendicular to the

-yp plane forming a right hand system.

f) Steering Angles (X, W ,'}Lr) Eulerian angles which
locate the missile axis with respgct td the plumbline coordinate

Xp

system.

AL

‘.
.
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Z
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The launch window studied is one hour wide, i.e., =30 min<€
Atl, €+ 30 min., For each selected value of Aty, the parameters
Ay and & p must be optimized. Studies indicated that the optimum
value of Xp is quite insensitive to variations in Ay and A tj,.
This was a fortuitous result since an actual first stage flight may
use an open-loop Y , versus time guidance which is invariant with
launch time and launch azimuth., A fifth order polynomial in time
for X p was written to fit the nominal ) , versus time table. This
polynomial which was used to guide all of the first stage trajec-
tories flown in this study is shown below.

First Stage )LP Polynomial

](p =a + alt + a2t2 + a3t3 + ahtl+ + ast5

a_ = +0.3835668 ag = -0.9412463 x 107
a; = -0.238470k a), = -0.6213386 x 1077
a, = +0.1633698 x 107 ag = +0.1104191 x 1078

For each value of Aty studied, trajectories were run at
several launch azimuths to determine the weight placed into orbit by
a nominal vehicle. These trajectories followed the 'pr polynomial
during first stage and were optimized in the upper stages by the cal-
culus of variations to obtain maximum burnout weight.

A similar analysis in Reference 1 discusses a parametric
study involving variations in launch time, launch azimuth, target
orbit inclination and altitude on a spherical earth,

Figure 1 illustrates the results of this study by plotting
A, versus weight in orbit. For each Aty an optimum value of launch
azimuth is clearly defined., The optimum launch azimuth associated
with each value of Aty is given in Figure 2. Note that the optimum
azimuth for Aty = 0 is 89.15° and not 90° as one might expect. This
result is due primarily to the fact that the powered trajectory re-
quired a finite time (about 12 minutes) and that the analysis was
performed using an oblate earth model. As shown in the following
sketch, the gravity gradient is resolved into two components, one
directed toward the center of the earth and one perpendicular to the
geocentric radius.
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A vehicle launched due east (A, = 90°) at AtL = 0 would
tend to leave its plane because of the gravity component, g . In
order to maintain flight in the desired plane, thrust would be re-
quired in the yaw direction. In effect, this would be a three dimen-
sional trajectory. When the launch direction is slightly north of
east, gravity draws the vehicle into the target plane without any
expenditure of propellant. Consequently, although a small plane
change is performed, the total energy expended in reaching the de-
sired end condition is a minimum.

In Figure 3, the maximum welght which can be placed in
orbit at each value of Aty is given. This curve indicates that the
best launch time with respect to weight in orbit is Aty = +17 min,
This corresponds to a launch azimuth of 91.9° and appears contrary
to the expected optimum of 90°. IExplanation of this result involves
a trade between the effect of the gravity component, g » previously
discussed and the contribution of the earth's rotation to the total
energy imparted to the vehicle., As launch azimuth is varied from
north to south, the effect of the gravity component becomes more
pronounced., In fact, if this effect is the only one considered, a
launch direction of due south is optimum. However, the tangential
velocity imparted to the vehicle due to earth's rotation is a maximum
when the launch direction is due east. When the effects of earth's
rotation and gravity are considered simultaneously, the optimum
launch azimuth becomes some angle south of east. Since the earth's
rotational effect is so much larger than the gravity effect, the
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optimum launch direction is slightly south of east.

Empirical implementation of the path adaptive guidance
scheme involves forcing the vehicle to follow an optimum path. The
guidance system continually monitors the vehicle's state variables,
i.e., position and velocity components, thrust acceleration, time,
and Aty. The on-board computer carries prestored guidance polyno~-
mials which allow calculation of the optimum required thrust direc-
tion as a function of the state variables. Prior to flight, a volume
of optimum trajectories is generated using the calculus of variations.
These trajectories, when flown, place the vehicle at the desired end
condition in an optimum manner. Polynomials are written to fit the
optimum Y history of these trajectories.

Two basic considerations were involved in the selection of
optimum trajectories contained in the volume used to write the poly-
nomials. These considerations are size and content. It is desirable
to make the volume large enough to adequately cover the range of
variables required and small enough to prevent the solution from
becoming too cumbersome. It is also desirable to vary the vehicle
and flight parameters to assure that any given vehicle, whose charac-
teristics are within their allowable tolerances, will fly a trajec-
tory enclosed in the volume studied. The range of dispersions used
is as follows:

Stage 1 Stage 2 Stage 3
Thrust, + 3% + 3% + 3%
Isp + b4 sec. + 6.36 sec.  + 6.36 sec.

Stage one trajectories were also perturbed by the presence
of head, tail, and cross winds. The wind profile assumed is maximum
design wind at an altitude of 12 Km. This wind is defined in Refer-
ence 2.

The volume chosen included vehicles with off-nominal values
of thrust and specific impulse in each stage, taken one at a time;
i.e., when Stage 1 was assumed off-nominal, Stages 2 and 3 were flown
as nominal, In addition, extreme variations were included by assum-
ing that the vehicle parameters all varied simultaneously in the same
direction. For instance, negative dispersions in both thrust and
specific impulse in all three stages were considered. The trajec-
tories flown with winds included vehicle variations in first stage
with all nominal upper stages. For each vehicle variation studied,
optimum trajectories are flown for -30 min€ & tl, £ +30 min. in ten
minute intervals, This volume resulted in a total of 339 optimum
trajectories,
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Table 1 illustrates the range of first stage burnout condi-
tions generated by the volume of vehicle and flight dispersions. The
increments of position and velocity vector components referenced to
the completely nominal vehicle are shown. An indication of the large
size of the volume may be obtained from the maximum and minimum vari-
ations denoted by asterisks.

2. Curve Fit

Once the volume of optimum trajectories has been calculated,
the next step involves generating guidance polynomials capable of
steering the vehicle during boost to an acceptable orbit injection.
Pitch and yaw steering polynomials must be written. In addition, a
polynomial which calculates the required time remaining to burnout
during the latter portion of the third stage flight is also written,

Steering and cutoff polynomials for the Saturn C-1 vehicle
are présented in Reference 3. In this study, liftoff always occurs
when the launch site is in the target plane. Three dimensional
turning during upper stage flight is required primarily to eliminate
out-of-plane perturbations caused by the earth's rotation and oblate-
ness.

The polynomials are of the following form:

a

AO + A1X + A2Y + A3Z + Ahx + ASY + ue

£(x, ¥y, 2, X, ¥, 2, F/M, t, O tL)

>
e}

f(xs Je 2, X, 5" z, F/M, t, AtL)

Ia
g

t = f(x, y, 2, X, ¥, 2, F/H, t, AtL)

where x, y, 2z, = components of position vector in plumbline coordinate
system (meters)

M

e

Ne
t

, = components of velocity vector in plumbline coordinate
system (meters/sec)

F/M = thrust/mass (meters/secz)
t = time from liftoff (seconds).
tktL = launch window (minutes)
x ,)1 = Eulerian angles defining thrust vector direction in
P J the pitch and yaw planes. (degrees)
t . = time remaining to engine cutoff (sec)




15

All combinations of the nine state variables to third order, plus a
constant, result in 220 terms.

Selected points from the 339 optimum trajectories in the
volume are used to write the steering and cutoff polynomials., A
cross-section of thre 220 possible terms is chosen up to a maximum
of 50. Using those terms, a least squares curve fit technique is
utilized to generate the desired polynomials.

RESULTS

A number of different polynomials were calculated for pitch,
yaw, and cutoff. Separate polynomials were calculated for second and
third stage. A preliminary comparison between polynomials may be
based on the root-mean-sum of the difference between X as defined by’
the optimum trajectories and X as calculated by the polynomial. Past
experience indicated that if RMS is less than approximately 0.3, the
polynomial would be acceptable and would result in an acceptable tra-
jectory. In the course of running actual trajectory simulations with
guidance commands provided by the polynomials, it was found that RMS
is not too valuable an indication of their validity. Comparison be-
tween two polynomials often indicates that the one with the lower
value of RMS results in greater deviations from the desired end con-
dition.

Typical polynomials are vresented in Tables 2 through 6.
The coefficients for each variable are given. The term Y found in
the polynomials is defined as Y, - R where Y, = value for Y in the
plumbline coordinate system and R = radius o¥ earth, The number of
terms in each polynomial and its corresponding RMS are tabulated
below.

No. of terms RMS
Second Stage Pitch 48 .136 Deg.
Second Stage Yaw Ls .081 Deg.
Third Stage Pitch 45 .854 Deg.
Third Stage Yaw 45 .191 Deg.
Third Stage Cutoff 38 .118 Sec.

In order to adequately test the validity of the polynomials,
a number of 3-dimensional digital flight simulations were run. These
simulations actually used the steering and cutoff polynomials to
guide the flight path. The check trajectories were chosen to encom-
pass each of the variations used to generate the initial volume.
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The desired cutoff conditions are as follows:

Velocity (V)

Radius (r)

Flight Path Angle (©)
Orbital Inclination (i)

7794.58 m/sec.
6555200. meters
90°

28.52°

i

The results of this check, using the polynomials already
presented, are given in Table 7. BErrors in altitude, velocity,
flight path angle and orbit inclination are presented for each
vehicle dispersion. The RMS of each error is also given.

An indication of the amount of plane change required for
1iftoff anywhere in the launch window is presented in Figure 4. The
angle AJP is defined as the angle between the target plane and the
plane established if an orbit is instantaneously attained at any
given launch latitude and azimuth, Data are given for launch azimuth
from 86 degrees to 94 degrees and for the optimum launch azimuth as-
soclated with each value of AtL.

Ground tracks of boost trajectories for Dty = O and
-30 min. are illustrated in Figure 5. For comparison, the ground
track of the target orbit is also shown. The tracks are plotted in
Mercator projection on a non-rotating earth.

CONCLUSIONS AND RECOMMENDATIONS

1. When launch occurs at the co-nodal time, the optimum
launch azimuth is 89.15°. Maximum weight is placed in orbit if
launch is delayed until 17 minutes after the co-nodal time.

2. Guidance polynomials have been written which success-
fully steer the vehicle into a space fixed orbit. Liftoff may take
place anywhere within a one hour launch window.

3, Perturbations in the nominal boost trajectory due to
vehicle variations in thrust, specific impulse and weight are easily
handled by the polynomials. Perturbations due to winds during boost
are also readily handled,

L, Simulation of typical boost trajectories steered by
the reported guidance polynomials results in RMS errors of approxi~
mately 1 km. in altitude, 0.1° in flight path angle, O.4 m/sec. in
velocity, and 0,007° in orbit inclination.

5. The selection of terms for use in the polynomials has
involved a trial and error process. Errors considerably smaller than
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those presented can résult if the proper selection of terms is made.
Development of an efficient scheme for determining the most signifi-
cant terms is desirable.

6. Curve fit techniques other than least squares should
be investigated.

7. Comparison between polynomials on an RMS basis has
been found to be ineffective. Consequently, in this study comparison
has been based only on a digital flight simulation using the poly-
nomials to steer the vehicle. An attempt to find a better statisti-
cal comparison should be made. If some polynomials can be eliminated
by the use of a statistical comparison, the amount of digital compu-
ter time required to determine the best combinztion of terms in the
polynomial would be greatly reduced.
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SATURN V GUIDANCE EQUATIONS
FOR POWER FLIGHT FROM PARKING ORBIT
TO EARTH-TO-MOON TRANSIT

by

S. Hu

/6.51;;} Summary /4*

A set of guidance equations for power flight of the third stage of
the Saturn V from parking orbit to earth-to-moon transit conic have been
developed. This set consists of four polynomial expressions in terms of
time and the state and vehicle performance variables. These equations
provide the time of leaving the parking orbit, pitch and yaw steering
angles during power flight and time remaining to third stage cutoff.

The method utilized to obtain these guidance equations is based upon

the calculus of variations. R OTHER
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INTRODUCTION

The purpose and object of this report is to present the work in-
volved and the results obtained to date concerning the development of a
set of guidance equations for properly guiding a Saturn V third-stage
vehicle to: (1) take off from a perturbed parking orbit, (2) boost
through a 3-dimensional optimal twisted powered flight, and (3) inject
into a properly selected earth-moon transit conic, so that the vehicle
will free-fall into the vicinity of the moon, passing the moon at a pre-
determined minimum altitude over a pre-determined point on the moon's
surface. These guidance equations would command the control system of
the vehicle in terms of '"when' and "how": (1) when to re-ignite the
third-stage rocket, (2) how to steer the rocket thrust in pitch and
yaw, and (3) when to finally cut off the rocket thrust, thereby, effec-
tively carrying out the optimal 3-dimensional post-orbital boost to

transit.

Briefly, the report first describes and discusses: (1) the basic
desired unperturbed optimal trajectory, (2) various unavoidable pertur-
bations inéluding analysis of perturbed parking orbits, and (3) the
3~-dimensional post-orbital boost which was studied following the per-
turbed parking orbits and other perturbation studies. A large volume of
perturbed trajectories was computed on the basis of all types of pertur-
bation combinations. This spectrum of perturbed optimal trajectories
was analyzed at every time interval and was reduced into a representa-
tive statistical model. All controlling guidance parameters were ex-
pressed in the form of multi-term polynomials of the vehicle!'s state
and performance variables. These guidance polynomials may be used to
convert instantly sensed state and controel elements of the vehicle
into command signals to enable the vehicle to follow a newly selected
optimal path from instant tec instant. Finally, each of these polynomial
guidance functions is analyzed: (1) in terms ¢f its own accuracy as to

how closely it represents all of the perturbed cptimal trajectories by
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the root-mean-square value of their value differences at all time inter-
vals, and (2) in terms of its guidance accuracy as to how far off is

the cutoff performance of the vehicle when it is steered by these guid-
ance polynomials as compared with the cutoff performance if it is steered

by the theoretical function of variational calculus optimization.
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PRE-SELECTED UNPERTURBED NOMINAL OPTIMAL TRAJECTORY

The desired and nominal trajectory chosen for this study represents
a 72-hour space flight path to the moon on October 13, 1966. This date
was chosen because there was an angular difference between the minimum-
inclination parking orbit from Cape Canaveral launch site (90° azimuth
over Cape Canaveral) and the earth-moon plane, thereby illustrating the
3-dimensional feature of the guidance functions to be developed in this

paper.

This nominal trajectory will pass the moon at a minimum radius’
(periselenum) of 1885 km (from the moon's center) over a predetermined
point on the moon's surface, which is 5° latitude N. and 167° longitude
E. from the zero point at the mean earth-moon~line. (Note: The said
167° longitude E. is in the rear side of the moon as viewed from the
earth; and the zero point at the mean earth-moon-line is in the Sinus
of Medii which can be seen from the earth at all times.) By n-body
celestial mechanics or by 6-body J.P.L. programming, a proper earth-
moon transit may be approached by Cape Canaveral launching at 10h 36m
6 sec (Greenwich time) on October 10, 1966. The vehicle will be in-
serted eastward into a 90° azimuth 100-nautical mile parking orbit. It
will then coast 1-2/3 orbit, and then inject into tﬁis earth-moon trans-
sit for free flight to the moon, passing the pre-selected point in the

vicinity of the moon.

The point of interest involved in this project centered in the
duration of the parking orbit waiting period and the post-orbital boost
to earth-moon transit. The trajectory to be optimized will have both
ends variable., It starts from the perturbed parking orbit in the 2/3-
orbit region and ends on the time-varying earth-moon transit (see
figure 2). The vehicle, under the adaptive guidance, will seek and
follow an optimal path from instant~-to-instant based on instaneous state
and control variables sensed, until it reaches the transit conic and

starts free flight.

Figure 2 described this desired and preselected nominal and un-

disturbed optimal trajectory.
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PERTURBATIONS SURVEY AND PARKING ORBIT ANALYSIS

It is usually impossible to fly along the above-mentioned pre-
selected nominal optimal trajectory, because there are many unavoidable
perturbations. To start with, there are perturbations due to a launch
window of + 30 minutes for time to launch. Then, there are the initial
errors of position and velocity vectors at the time of insertion into
parking orbit. This insertion error, in terms of variations of velocity,
éltitude, and path angle, [&v,er,Z&@ , will be modified and enlarged
during the parking orbit coasting period due to earth oblateness and con-
trolled venting effects of the vehicle's propellant tank. Therefore,
errors of Z&v, Z&r, ZXé; at the time of re-ignition or at the end of
parking-orbit coasting may be greater than at the time of insertion.
Besides, there are perturbations due to the orbital boost window; i.e.,
one period advance or one period delay for the time of re-ignition. In
other words, the vehicle may be ignited in the region of the 2/3 orbit,
1-2/3 orbit, or 2-2/3 orbit.

It is to be noted that the variation in yaw (out-of-plane motion)
was assumed to be negligible for this first-cut investigation and was
not included in parking orbit insertion errors. The out-of-plane yaw
effect, however, was properly included in the studies of parking orbit

perturbations due to earth oblateness and related factors.

After the third stage re-ignition, there are further perturbations
due to the imperfections of post-orbital-boost's propulsion system in
terms of variations of thrust and specific impulse, j:ZXF, i:ZXIsp'
This, together with other perturbations as mentioned in previous para-
graphs, will prevent the vehicle from following the exact preselected
nominal optimal trajectory in reaching the final third stage cutoff

point on the earth-moon transit.

The study of this complex picture of perturbations may best be

approached by the study of the parking orbit perturbations. During
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parking orbit coasting, there are two external variable forces acting

on the vehicle., They are: (1) gravitational force due to the oblate
earth, and (2) assumed axial thrust force due to the controlled venting
of the vehicle'!s propellant tank. As the pressure in the propellant
tank rises, due to aerodynamic heating and solar heating, it must be
released from time to time in order to prevenﬁ it from exceeding certain
limits. Figure 3 illustrates the general venting mechanism of the
third-stage vehicle; and figure 4 illustrates the force function due to
the axial venting. The venting is assumed to start after 12 minutes
from the time of insertion. It exerts a 300-pound thrust for 90 seconds,
shuts off for 16 minutes, and vents again for 90 seconds. This venting

cycle will be repeated until the time of re-ignition.

The parking orbit perturbation due to initial insertion error was
studied on the basis of this assumed venting-force function together
with oblate earth effect. The plumbline coordinate system, the pitch
plane diagram, as well as the orbital pitching rate of the vehicle

adopted for the study, are illustrated in figures 4, 5, and 6.

The initial insertion error in terms of Z&r, ZXV3 and 9 was assum=-
ed to be + 1 km, + 2 m/sec, and + 0.02 degree. A total of ten trajector-
ies for parking orbit coasting was studied to cover all cases of probable
perturbation combinations with oblate earth and controlled venting ef-
fects. One trajectory was for oblate effect only; one trajectory for
combined oblate and venting effect; and the other eight trajectories
for various Av, Ar, and A@ effects on the basis of oblate earth
and controlled venting vehicle., The details of the trajectory composi-

tion for the parking orbit perturbation are listed in figure 7.

Results of all ten cases were studied, analyzed, and compared.
Evaluated results indicated that the initial insertion velocity error,
Z&v, was most influential and represented the controlling input. Figure
8 is a composite diagram designed to illustrate this point. Outer and

inner ellipses (see figure 8) represent the energy range of the perturbed
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orbit. They are based on initial ZXV variations and they envelop

other ellipses which are based on A&r variations. With this controlling
initial ZXV'at insertion as input, the resulting perturbations of [ﬁv,
Ar, and A@ in the re-ignition region were studied for a vented orbit-
ing trajectory around an oblate earth. They are plotted in figure 9
-showing Ar, Av, and A 9 deviations at the time of re-ignition of

the third-stage vehicle due to the initial insertion error of Z&v

(for a vented orbiting trajectory and an oblate earth). As shown in
figure 9, an insertion.Z&v error of + 2 m/sec will cause a total varia-
tion of approximately + 10 km in altitude, + 8 m/sec in velocity, and

+ 0.05 degree in path angle in the area of the third orbit re-ignition.

In addition to this parking orbit perturbation (which may be repre-
sented by velocity variations, i;[&v, at insertion), there are three
other types of perturbations: launch window or launch time variation;
orbital residence or waiting period variation; and thfust Isp variation
during third stage post-orbital boost. These are illustrated in figure
10 and tabulated in figure 11 (table). This 33 set means that a total
of 27 trajectories will give a fair coverage of all possible perturba-
tion combinations for studies prior apd up to third-stage re-ignition.
In order to cover fairly the various perturbation combinations for
studies of post~orbital boost, 27 x 5 = 135 trajectories are used.
These perturbed trajectories may be seen pictorially in figure 10.
Illustrated in figure 10 are launch windows, parking orbit windows,
and Ar, Av, AG at re-ignition due to insertion Av error. Also
illustrated in figure 10 are the 3-dimensional post-orbital boost
perturbations and the spread of the end earth-moon transit which is
due to the combined effect of these perturbations and the shifting of

the transit following the moon's motion.
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3-DIMENSIONAL TWISTED POST-ORBITAL-BOOST AND RE-IGNITION TIMING

As previously mentioned, the post-orbital-boost trajectory may be
optimized by variational calculus with both ends variable. It starts
from the perturbed parking orbit and ends on the earth-to-moon transit
trajectory at third stage final cut off. Such a space or osculating
conic for nominal flight may be based on the nominal earth-to-moon tran-
sit trajectory computed by the 6-body JPL program. To cover the 4-hour
window of third-stage re-ignition (2/3 orbit, 1-2/3 orbit, 2-2/3 orbit
with variations of early, nominal, and late launching for each orbit),

a total of 9 earth-to-moon transit trajectories corresponding to differ-
ent time of third-stage final cutoff and different time of arrival at
Moon were computed and plotted in figure 10-A. The time-varying earth-
to-moon transit may be further transformed into time-varying space or
osculating conic passing the final cutoff point as illustrated in

figure 10-B. The orbital elements of this osculating conic is tabulated

in figure 10-C.

As this table is further expanded to cover more osculating conics
at smaller time intervals, these orbital elements may be plotted and
curve-fitted as time varying functions. These functions, therefore,
represent one of the two ehd conditions for the above-mentioned varia-
tional calculus optimization. The other end condition, of course, may
be represented by the perturbed parking orbit in the neighborhood of

third-stage re-ignition.

In view of the fact that the earth-moon transit plane forms only
a very small angle with the due-east parking orbit plane from Cape
Canaveral, the analysis for third-stage re-ignition may be approached
by a 2-dimensional approximation. (See figure 12.) Through variational
calculus optimization, both the time duration of the third-stage re-
burning, tb’ and the swept angle by the post-orbital bOOSt’/gincl’ were
computed on the basis of various cutoff points on the transit or various

range angles between '"cutoff points on the transit and perigee of the
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transit, " . Graphs of t, vs. Qb and‘ZE. . Qb a i
sit, qbp p b p inc1 V& p’ s shown in
figure 13, indicate a first-cut information concerning optimal re-

ighition point.

By this approximated location of re-ignition point, a rescheduling
by the venting may be made. 1In order to provide a clear and smooth
operation for the astronaut within 500 seconds prior to re-ignition,
it was programmed to reschedule or to advance the last venting in
order to have a 500-second no-venting coasting prior to the third-
stage re-ignition. It is important, therefore, to record the space
angular orientation of the vehicle at this particular time: time of
"start of no-venting program" or tsonvp’ the details of which are shown
in figure 1l4.

Simultaneously, the parking orbit perturbation was re-studied on

the basis of this rescheduling of the last ve‘nting.Av, Ar, and A@

variations at the time of "start of no-venting program" (tsonvp) due
to initial insertion error of ZXV were re-calculated.
With the values of real time of t together with the corres-

sonvp
ponding Z&v, ZXr, and Z&éa, several 3-dimensional calculus of varia-

tions ' 30V) optimal paths were studied with different no-venting
costing, ZXt, along the last 500 seconds, plus or minus a few seconds,
of the parking orbit. As also illustrated in figure 14, the optimal

t . ... was located after three such trials for each of the 27
re-ignition

trajectories to cover all probable perturbation combinations prior to
re-ignition, as mentioned in previous sections and tabulated in figure

11.

In detail, the 3-dimensional MSFC V=30 deck and calculus of varia-
tions optimal program were used with state variables at real time t
sonvp
and corresponding Av, Ar, and A@ as inputs. It started with an
assumed parking orbit no-vent coasting of about 500 seconds, then pro-

ceeded through re-ignition, and 3-dimensional optimal boost to final
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cut off on transit. The procedures were repeated until the optimal

t ... was found for each of the above mentioned 27 trajectories
re-ignition

" (minimum time duration for post-orbital boost).
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DEVELOPMENT OF GUIDANCE EQUATIONS: t ..o X » Xos € 0 rrs

Once all 27 optimal trajectories are established to cover all prob-
able combinations of perturbations prior to third-stage re-ignition, each

of these trajectories may be examined prior to re-ignition at each of its

time intervals. As the programed no-vent coasting from t lasted
500 SOTVP
about 500 seconds, at 5-second intervals, a total of =X 27 or 2700

points existed. At each of these 2700 points, we may note and tabulate
corresponding time remaining to re-ignition together with vehicle's
state variables x, y, z and x, ¥y, 2. This is the guidance function of
"time remaining to re-ignition" expressed in tabular form. In order to
handle the case by on-board computers, this large table is further fe-
duced by functional approximation through.least square procedure into
32-term polynomials of state varialbes. In other words, we have de-
veloped a statistical and representative model of the 27-element volume
tfajectory. In theory, this 32-term polynomial should fairly represent
all of these 2700 points and should be capable of computing the "time
remaining to third-stage re-ignition," tre-ig’ pased on instantaneous
sensing of the vehicle's state variables. Figure 15 shows this 32-term
equation. The units for x, y, z; X, ¥, 2; and t are m, m/sec, and sec,

respectively.

An overall re-examination at each of these 2700 points was made
in terms of the difference between the actual value and the value com-
puted by the polynomial. This examination revealed that the root-mean-
square value of all of these differences is equal to 1.3758 seconds. In
a way, this RMS value indicates how well the polynomial represents these
27-element volume trajectories and the corresponding 2700 points as

their representative statistical model.

Once this polynomial guidance equation for "time remaining to re-
ignition" is obtained, each of the 27 trajectories may be re-run from

the time of ”ts " through the polynomial-calculated time of re-

onvp
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ignition, then, through the 5-perturbation combination for post-orbital
boost (see figure 11). A total of 27 x 5 or 135 trajectories was com-

puted.

Using the samé procedure as described in previous sections and based
on these 135 trajectories for post-orbital boost period of about 350

seconds at 5-second intervals, a total of approximately 135 x 320 _ 9000

points may be tabulated. At each point, there are correspondinz Xp, ny
and "time remaining to final cut off,n teut off’ and corresponding state
and performance variables of the vehicle: x, y, z, X, ¥, 2; and F/m,

m/m, and t. By least-square curve fitting, a 43-term polynomial for Xp’

a 42-term polynomial for Xy’ and a 42-term polynomial for t. were

ut off
developed and are tabulated in figures 16, 17, and 18. RMS values re-
presenting the polynomials! accuracy are 0.455°, 0.105°, and 0.600 sec-
onds, respectively. The units used for these guidance equations are

2 - . .
m, m/sec, m/sec”, l/sec, and sec for x, x, F/m, m/m, and t, respectively.

* Note: Xp’ Xy représents pitch steering angle with respect to
plumbline vertical and yaw steering angle measured from X, Y

plane as shown in figure 6.
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ERROR ANALYSIS AND EVALUATION

Finally, the accuracy of these guidance polynomials in terms of
the difference between the cutoff position and velocity vectors of the
vehicle when steered by these polynomials and those obtained if steered
by theoretical functions of variational calculus optimization have been

examined.

In order to do so, 15 simulated flights were made, 5 from each
orbit with 2-sigma value deviations of[XF,[&Isp,ZXW,ZXt, and zero deria-
tions (nominal). These 15 simulated trajectories, as tabulated in
figure 19, were run by both adaptive guidance polynomials and by
theoretical calculus of variations (COV) optimization. Each of the 15
cases was examined in terms of cut-off r, v, g, and N (altitude,
velocity, path angle, and angular difference between normals of trajec-
tory planes or transit planes). These 15 values of differences were
again expressed in RMS errors. Figure 20 illustrates the details of the
comparison. Respective RMS errors at cutoff are about 2 km for altitude,
5 m/sec for velocity, 0.06 degree for path angle, and 0.008 degree for

transit plane deviation.
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CLOSING REMARKS

1. This study represents only the first cut investigation to
illustrate the feasibility of the adaptive guidance technique in guid-
ing the Séturn V third-stage vehicle through post-orbital boost to earth-
moon transit. No attempt was made to carry out overall optimization of

the problem.

2. Attempts were made to illustrate the 3-dimensional feature of
the guidance technique. There was angular difference between the park-
ing orbit plane and the transit plane for each of the 135 trajectories
studied. The plane difference ranged from 0.9 degrees up to l.4 degrees
with 1.2 degrees for nominal case. It is to be noted that none of the
five reference planes; MEP (earth-moon plane), equational, ecliptic,

transit, and parking orbital; are co-planar.

3. It is to be repeated that this paper was based on: (1) assumed
initial errors at parking orbit insertion, (2) assumed relationships for
space conics at the third stage final cut-off, (3) approximated re-
ignition timing. It is planned that the study will be repeated with re-

fined and actual inputs in three areas: (1) actual errors instead of

assumed errors at the time of parking orbit insertion, (2) refined

time-varying functions of the corresponding space conic elements in

the region of third-stage final cutoff, and (3) refined and iterated

re-ighition timing. Area (1) is presently pursued by launching phase

study group. Area (2) is to be pursued in a manner as illustrated by
figures 10-A, 10-B, and 10-C. Area (3) will be pursued in a manner
as described in the second half of the section "3-Dimensional Twisted
Post-Orbital Boost and Re-ignition Timing." The optimal re-ignition
timing will be determined by variational calculus with both ends
variable. As mentioned previously, one end will be represented by
last section of the refined parking orbit with adjusted venting sche-

dule together with 500-second no-venting costing. The other end will
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be represented by the refined time-varying-functions of the earth-to-

moon transit conics.

4. 1In error analysis, this accuracy was based on cutoff errors
at final cut off on the earth-moon transit: 2 km in altitude, 5 m/sec
in velocity, 0.06 degree in path angle, and 0.008 degree in trajectory
plane deviation. It is expected that these errors will be further re-
duced in the projected refined study. Furthermore, mid-course correc-
tion will further correct whatever the final error may be in order to

arrive at the moon in the desired manner.
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Figure 6
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1.5 7 ¥ SUMMARY /3\

The minimum and maximum range capability of the S-IVB Stage
and Service Module used as vehicles for powered abort from an expected
volume of Saturn V boost trajectories has been determined. Abort is
assumed to occur between the time of second stage ignition and a time
near final lunar injection. Abort trajectories terminate at a re-
entry altitude of 120 km with flight path angles of 94° and 99.5°.

INTRODUCTION RurHer

During flight of the Saturn V vehicle, from lift-off to
lunar injection, malfunctions may occur which would necessitate an
abort. Abort may be defined as the reaction to malfunction which
requires the immediate abandonment of primary and secondary missions,

Three flight modes may be considered for the Saturn V. They
are:

1. Normal flight - no malfunctions

2. Abnormal flight - minor malfunction
a. Primary mission may still be accomplished.
b. Secondary missions may be accomplished if the
primary mission cannot be completed.

3. Aborted flight - serious malfunction
a. Unpowered abort.
b. Powered abort.
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Using the Apollo vehicle, unpowered abort can be accom-
plished with acceptable re-entry velocity and flight path angle for
most sub-orbital abort initiation times, However, the low maneuvera-
bility of the Apollo does not allow a great degree of flexibility in
landing site selection,

This study is concerned with powered abort using the S-IVB
stage or Service Module. Initially, the study was directed toward
obtaining a unique landing site accessible from all abort points. It
soon became apparent that such a single site did not exist and the
problem expanded to determining the range capabilities of the selected
powered abort stages so that the minimum number of abort sites could
be chosen. For a select group of landing sites, the final phase of
the study will be to determine Path Adaptive Guidance steering poly-
nomials for use during powered abort trajectories.

It is the purpose of this abort study to establish the two
dimensional range capability of the S-IVB stage and the Service
Module (SM) when used as abort vehicles between the time of S-II stage
ignition and injection into lunar orbit. The ground rules imposed
during this study were:

1) DNo coast would be considered from ignition of the abort
vehicle until the re-entry point was reached.

2) No cross-range capability would be examined. The study
would be two-dimensional.

3) Abort trajectories would originate from an envelope of
likely boost trajectories as defined later in this report.

L4) Abort trajectories would terminate with acceptable re-
entry conditions at an altitude of 120 km.

The data contained in this report represents an extension of the
study reported in Reference 1.

DEFINITIONS
-~ altitude
- velocity
- flight path angle measured clockwise from local
vertical

- range angle measured from launch to the vehicle re-
entry point along a spherical earth surface.

angle of attack

- time derivative of o€

- time derivative of o¢

ERR = Qer
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ANALYSIS

The Powered Abort Study consists of two parts, each charact-
erized by the vehicle to be used during powered abort flight. Part
one used the Service Module as the abort vehicle and part two used the
$-IVB stage as the abort vehicle. In order to begin the abort study,
a boost trajectory envelope was defined. Eighteen boost trajectories
were generated by varying thrust, Isp and stage inert weights of all
three stages of the Saturn V vehicle. The variations used are tabu-
lated below.

Stage Variations for Boost Volume

5-1C S-11 $-1VB
Thrust (1bs) + 450,000 + 100,000 + 20,000
Isp (sec) + 4 + b + h

Inert wt. (1bs) + 15,000 + 5,000 + 2,000

The descriptive characteristics of the base line Saturn V
vehicle used in this study are given in Table 1.

The two boost trajectories selected, from which abort was
initiated, were the two which most closely represented the boundaries
on an altitude-velocity graph of the eighteen boost trajectories.
These two boost trajectories form the boost trajectory envelope shown
in Figures 1 and 2, znd are termed "boundary" trajectories.

For the Service Module, seven abort times were initially
selected., Three of the abort times selected were during sub-orbital
flight and four of the abort times were during super-orbital flight.
Four sub-orbital abort times between second stage ignition and third
stage ignition were selected for the S-1VB stage.

The abort times selected were as follows:

Service Module 5-1VB Criteria
167 sec. 167 sec. Near S-II ignition
275 sec.
395 sec. %95 sec.
503% sec. Near S-I1 burnout
650 sec.
790 sec. Near S-IVB re-ignition
834 sec.
874 sec.

946 sec. Near S-1VB final cut-off
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As the study progressed, it was discovered that, under the
established ground rules, abort with the SM at 946 seconds could not
be accomplished. A time of 906 sec. appeared to be near the limit of
SM superorbital abort time and, therefore, was used in the SM super-
orbital portion of this study. Later another time of 915 sec. was
also studied in attempting to precisely locate the time limit., From
each of the boundary trajectories, at each of the chosen abort times,
it is desirable to fly the vehicle to a set of state variables as it
approaches the earth's atmosphere. The set of variables is defined
as a ''re-entry window". These re-entry conditions define the terminal
point of powered abort flight. For this study, the re-entry window is
defined by an altitude of 120 km. and a flight path angle variation at
this altitude from approximately 90° to 105°, depending upon the re-
entry velocity. Abort trajectories were run on a 2-degree of freedom
Calculus of Variations digital prozram which includes a mathematical
scheme capable of isolating on pre-set conditions at burnout. (Ref-
erence 2)

In this study the end conditions were initially selected to
be a re-entry altitude of 120 km and a flight path angle of 94 degrees.
However, for the sub-orbital &M cases, isolations on 94° could not
always be attained. This inability of the Sii to attain a 94° re-
entry from all abort points is due to the low thrust to weight ratio
which is unable to modify the steep, high speed near ballistic path
of the vehicle. Inability to isolate on = gLh° for sub-orbital SM
cases suggested that isolations from the entire boost trajectory at
some higher R might be possible. A value of 99.5 degrees was selec-
ted so that re-entry conditions for each powered abort flight were
h = 120 km and R = 94 or 99.5 degrees.

The technique of obtaining the maximum and minimum range
angles for each abort time and from each trajectory consists of sever-
al steps: '

1. A series of explicit Calculus of Variation (COV) tra-
jectories were generated by specifying @€, and &€, and using the
transversality condition to specify && 5. This entire set of runs
was made with velocity extremalized and with range angle an open
variable, i.e., no explicit control or optimization of @ was per-
formed.

2. Each of the above series of trajectories was examined
throughout its burn time for points that approached the desired re-
entry window conditions. This selected burn time and the correspond-
ing @€ and &€, for that trajectory were then used as initial condi-
tions for an isclation run on the exact desired re-entry window con-
ditions. An "isolztion" case is a series of explicit trajectory runs
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in which the digital program automatically varies o, and Ckfo until
altitude at burnout equals 120 km and the flight path angle equals
either 94° or 99.5°, whichever is specified. After an isolation was
obtained, the burn time was changed to either a larger or smaller
value and a new isolation of the re-entry conditions was attempted.
This time incrementation procedure was continued to establish the
minimum and maximum burn times which would yield isolation on the
desired end conditions. For the S-1VB stage, the maximum burn time

to produce desired re-entry was taken as the propellant depletion
time, although greater burn times would also produce acceptable re-
entry. However, for the service module from some abort times, iso-
lation on the desired re-entry window conditions could not be obtained
for any vehicle burn time. As discussed previously, when this became
apparent, the re-entry flight path was changed from 94° to 99.5°,
Although this new 28 value permitted successful trajectories from all
abort times, for some abort times the maximum burn time achievable was
less than the service module maximum burn time.

An example of the results from this part of the analysis
is illustrated by Figure 3. ¥Yor abort from a time of 503 sec. on the
Boundary Boost Trajectory A, the data show the re-entry velocity and
assoclated range angle for burn times from the minimum to the maximum
for the S-1VB stage. For these data, range angle is unspecified and
the COV analysis produces a maximum and a minimum velocity for each
burn time. Both of these velocities are shown as well as the ¢
associated with each. Similar data for Boundary Boost Trajectory B
are shown in Figure 4,

3., The final step consisted of incorporating an ¢ term
with the analysis as a parameter to be varied to determine the® ex~-
treme range angles for a select abort stage burn time, This amounts
to using the curves of Figures 3 and 4 as a starting point and varying
&C o until maximum and minimum ranges are obtained. After carrying
out the work for several abort times, it became apparent that for a
given abort time the maximum range was obtained by performing this
@ incrementation technique with the maximum burn time point (point
(a) of Figure 3) and that the minimum range was obtained by incre-
menting the minimum burn time point (point (b) of ligure 3). Per-
forming this procedure for a select abort time on boost Trajectories
A and B provided the maximum and minimum range angles for that abort
time.

RESULTS
As previously stated, only two boost trajectories have been

used in this abort study. Therefore, for each abort time there exists
two maximum and two minimum ranges, i.e., one for each trajectory.
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The results presented below define the greater of the two maxima as
the maximum and the smaller of the two minima as minimum range.

For the service module, Figure 5 gives the maximum and
minimum ranges as a function of abort time. The abort times shown
represent abort from sub-orbital conditions on the boost trajectory.
After the curves were calculated, an evaluation of the resulting re-
entry velocities and flight path angles was made to determine if the
re-entries were "'safe''. A safe re-entry is defined to be one which
does not exceed a pilot acceleration dose limit or one which does not
skip out of the earth's atmosphere after re-entry initiation. (See
Raytheon's "Re-Entry Corridor for Manned Lifting Vehicle'" elsewhere
in this report, for re-entry limits). The curves of Figure 5 were
completed before these limits were available and, therefore, are
independent of such constraints. It was found that for the maximum
range curve, acceleration dose limit was exceeded for abort times
greater than 606 seconds. For times greater than 606 seconds, the
maximum permissible @ would be determined by the acceleration dose
limit constraint. It is noteworthy that the limits are extremely
sensitive to re-entry angles. For example, changing re-entry angle
to 97° would result in exceeding neither an acceleration limit nor
a skip-out limit.

Similar information for the sub-orbital abort with the
S-IV B stage is given by Figure 6. The advantage of the higher thrust
to weight of the S5-IV B compared to the Service Module is evidenced by
the greater re-entry range capability. As in Figure 5, the curves of
Figure 6 are independent of acceleration or skip-out constraints.
Later evaluation showed that for abort times greater than 352 seconds
the maximum range would be determined by the skip-out constraint.

For service module abort from super-orbital conditions,
Figure 7 gives the range capability. Super-orbital abort occurs
after leaving the waiting orbit. However, the range angles shown
are for powered flight only, i.e., ¥ during coast in orbit is assumed
zero., The intersection of the two curves represents the maximum
flight time from which no-coast abort with the service module is
possible. This time is somewhat less than the full Saturn V burn
time so that during the last few seconds abort cannot be accomplished
with the service module, This conclusion is modified if coasting
were permitted, if a different re-entry angle were used, or if a
greater thrust to weight ratio were available.,

CONCLUSIONS

1. The data presented here represents the abort no coast
range capability envelopes of the Service Module and S-1VB stage from
the selected boost envelope 'boundary'" trajectories with specified
re-entry conditions.
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2. Some desired re-entry conditions could not be reached
when the SM was used as the abort vehicle for some booster flight
times due to its low thrust to weight ratio.

3, Abort with the SM is impossible after a flight time of
938 seconds under the ground rules of this study.

L, It may be possible to extend the 2-dimensional range
capability by investigoting the other values of re-entry angle.
Other re-entry angles also have a marked effect on range limits de-
fined by excessive acceleration dose and skip-out.

RECOMMENDATIONS

The information of this report should be used to make a
preliminary selection of desirable abort site locations along the
AMR boost ground track. Once such sites are chosen, volumes of
abort trajectories may then be generated from which the powered
abort guidance equations may be produced.

Abort using coast and abort into a parking orbit should be
considered as methods of extending the limiting abort time of the
SM as established by this study.
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TABLE 1

Stage I

Sea Level Thrust (lbs.)

Sea Level Specific Impulse (sec)

Lift off weight (1bs)

Propellants consumed (lbs)

Weight dropped at S-1C separation (1bs)
Azimuth Angle at Lift-off (deg.)

Stage 11
Vacuum Thrust (1bs)

Vacuum Specific Impulse (sec)
Lift-off weight (1lbs)
Propellants consumed (lbs)

Weight dropped at S-II separation (lbs)

Stage 111

Vacuum Thrust

Vacuum Specific Impulse (sec)

Lift-off Jeight (1lbs)

Propellants consumed to orbit (1lbs)
Weight lost in orbit (1lbs)

Propellants consumed to injection (1lbs)
Total propellants consumed (lbs)

Weight dropped at S-IVB separation (1bs)

Gross Payload (1lbs)

* Specific impulse is classified.

7,500,000
"
6,000,000
L 242,362
391,560
70

1,000,000
1,366,078
919,010
87,800

200,000
359,268
78,521
5,000
146,831
225,352
23,100

105,815
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Summary

10525 A

A study has been made to determine the extreme re-entry
flight-path angles, for various re-entry speeds, which permit safe,
unpowered descent for a given manned lifting vehicle. Circular arcs,
called entry arcs, were located at the initial altitude of 120 km. such
that, for a specified initial speed and flight-path angle, entry at any
point within the associated arc ensures the ability to arrive at the des-
ignated target on the surface of the earth. Nuraor

I. INTRODUCTION

This study is part of the general abort re-entry problem. The
trajectory of a space vehicle may include a boost phase which trans-
ports the vehicle through the atmosphere and into space, a powered
and/or cruise phase through space, and a re-entry into the atmosphere
followed by an unpowered descent to an altitude at which the landing
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phase can begin. Somewhere along the powered phase of the trajectory
a decision to abort may be necessary. The capability of a manned ve-
hicle after an abort, especially its ability to re~enter the atmosphere
safely, is of utmost importance.

This report is concerned with the re-entry corridor of a
manned lifting vehicle descending through the atmosphere. Definition
of this corridor requires finding the bounds on the re-entry velocity
and position which permit a safe descent to a specified landing site.

The acceptable initial conditions for re-entry and descent prescribe

the terminal conditions for the exo-atmospheric phase of the trajectory.
The results of the studies of the spatial and atmospheric phases of the
trajectory must be combined to determine the situations from which
successful aborts may be initiated.

II. LIST OF SYMBOLS

drag coefficient

o

lift coefficient

&

drag

lift

pilot penalty function

earth radius

reference area

final time

vehicle speed

initial (re-entry) vehicle speed

<<HUL=IYEOU OO0

(o]

aerodynamic acceleration
gravitational acceleration
g at surface of the earth

altitude
vehicle mass
time

""B’J'OUQOQN

control variable, angle of attack
flight-path angle

initial (re-entry) flight-path angle
density of air

pilot acceleration-endurance time
angular displacement, range

S 49 ocuch
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III. PROBLEM DESCRIPTION

A. Dynamic Model

The vehicle is considered to be a particle of constant mass
which moves in a plane with respect to a spherical, non-rotating
earth. It is subject to the action of three forces: the inverse-square
gravitational field of the earth, its lift, and its drag. The descent of
the vehicle is controlled by varying the lift and drag forces. The
variation of air density with respect to altitude is included. The force
diagram is shown in Figure 1.

The weight of the vehicle is 8500 pounds and its reference area
is 12.97 square meters. The aerodynamic coefficients are functions
of the control variable, o, as shown in Figure 2. The maximum lift-
to-drag ratio is 0.82 which occurs at a = 50°. During this study, the
angle of attack was constrained to the interval of -70° to 70° because
this interval includes the extreme variations in lift, drag, and lift-to-
drag ratio.

Below Mach 2, the aerodynamic coefficients are functions not
only of o but also of Mach number. In view of this consideration, a
speed of Mach 2 served as the stopping condition for the computing.

This speed occurs at altitudes compatible with the initiation of the
landing phase.

B. Egquations of Motion

m’\./'= -D~- mgcosg
mV(é+q',)= -L + mg sin ¢
(R +h)¢ = V sing

i1= V cos @

where

D = El Ca) p(h) v2s
L = 3C, (2 plb) Vs
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and
p(h) is given by ARDC Model Atmosphere 1956.
CD(a) and CL(a) are shown in Figure 2.

2
o = 9.815 m./sec

g
R = 6.371 x 10° m.
s

12,97 m.z

m = 393 kg. secz/m.

C. Pilot Acceleration-Endurance Constraint

For a manned re-entry, o programs which produce excessive
aerodynamlc accelerations must be excluded. This condition is im-
posed during the solution procedure in the following way. A man's
ability to remain usefully conscious is a function of both the aero-
dynamic accelerations he experiences and their durations. It has
been shown that he can tolerate quite high accelerations if they are
sufficiently brief. The dimensionless aerodynamic acceleration, a,
is defined by

_ VL2, p?
mgo

Experiments have yielded the endurance limit 7(a) of experienced test
pilots to given aerodynamic accelerations. By adding the equation

1

b= T(a)

to the equations of motion, the "acceleration dose" or terminal value
of the "pilot penalty function" is given by

T

_ 1
P = g T(a) dt
0

where T is the time of flight. When this quantity becomes 1, the
pilot is assumed to have had a full dose of acceleration; therefore,

he should not be exposed to further accelerations that would increase
this dose, if he is to function usefully. Thus, a terminal constraint is
P<l.
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The pilot acceleration-endurance function, 7(a), used in this
study is shown in Figure 3. This function was derived principally
from information in References 1-3. The more recent data in
References 4 and 5 reveal that the function of Figure 3 is conserva-
tive by factors from 2 to 5, in terms of permissible time for a given
acceleration, if the pilot is oriented in the most favorable attitude.

In the current study, however, the attitude of the vehicle is subject to
wide variations in some maneuvers. If the pilot is exposed to similar
variations in attitude, he may experience situations where, according
to Reference 5, his endurance is significantly less than that shown in
Figure 3. It is believed, however, that the t(a) relation employed in
the current study represents a reasonable compromise for the speci-
fication of pilot endurance to acceleration. As a refinement in the
future, acceleration endurance might be introduced as a function of
both aerodynamic acceleration and pilot attitude.

D. Procedure for Trajectory Optimization

The differential equations of motion together with the pilot
penalty function form a non-linear system. The initial conditions are
the altitude, 120 km., the re-entry speed, and the flight-path angle,
the latter two being parameters of the study. The terminal condition
is that the pilot not receive more than a full "dose" of acceleration,
i.e. P(T)<1l. The control variable, «(t), occurs as an unspecified
function.

For a given re-entry velocity (speed and flight path angle),
the end points of the entry arcs are found from the maximum and
minimum range trajectories. Several nominal o programs are as-
sumed and the system is integrated by means of a high-speed digital
computer for each one in turn. None will, in general, yield the ex-
tremal range nor satisfy the penalty constraint. The most promising
a program is chosen and then subjected to successive improvements.
A systematic procedure for producing such changes is the steepest-
ascent method developed at Raytheon Company and described in
Reference 6. It is a calculus of variations technique and alters the o
program in such a way as both to improve the "pay-off" quantity
that is being extremalized and to meet any terminal constraints.

Thus a sequence of ¢ programs is generated. This procedure is
terminated when the terminal constraints are satisfied, and negligible
gains in the pay-off quantity are produced by successive iterations.

For a given re-entry speed, the maximum re-entry flight-path
angle can be found by increasing the initial flight-path angle until it
becomes impossible to constrain the pilot penalty function to 1 either
as a terminal constraint in an extremal-range series of iterations or,
in more difficult cases, as the pay-off quantity in a minimal-pilot-
penalty series of iterations. The minimum re-entry flight-path angle
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is established theoretically at 90° for subcircular entry speeds and
at an angle that exceeds 90° by an arbitrarily small amount for cir-
cular entry speed. For a supercircular entry speed, the minimum
re-entry angle can be estimated using the work of References 7 and
8, and verified by decreasing the initial flight-path angle until, using
maximum negative lift, the vehicle rises above the specified maxi-
mum altitude following the initial pass through the atmosphere.

IV. RESULTS

The results are tabulated in Table 1. For a given entry velo-
city, the angular distance between the target and the re-entry point
nearest to the target is indicated in the Minimum Range column. If
the vehicle enters the atmosphere at this distance from the target,
the descent must be made using the o program associated with the
minimum- range trajectory. An entry closer to the target will cause
overshoot because the steepness of the trajectory is limited by the
pilot penalty function. Similarly, the numbers in the Maximum Range
column indicate the farthest from the target that entry may occur.
The entry arc is the circular arc at the specified initial altitude of
120 km. joining the nearest and farthest possible re-entry points.
Entry at any point within this arc with the associated initial speed and
flight-path angle ensures the ability to arrive at the target. The
entry flight-path angle, which is the direction of the initial velocity
vector measured counterclockwise from the local vertical, can be
confined to lie between 90° and 180°. The trajectory for an entry
flight-path angle lying between 180° and 270° is the same as for its
mirror image in the 90° to 180° range.

Table 1. Tabulation of Results

Entry Entry Flight- Minimum | Maximum Entry-Arc
Speed Path Angle Range Range Length
(m./sec.) (degrees) (degrees) | (degrees) (degrees)
750 90 0.93 1.05 0.12

180 0 +0. 05 0.10
3500 90 4.8 7.3 2.5
110 2.3 3.1 0.8
7833 90. 50 46 138 92
101. 75 8 16 8
*
11080 94. 71 22 160 138
99.8 15 110" 95

*See discussion in text.




The re-entry corridor, as it appears in the initial-flight-path-
angle, initial-speed plane, is shown graphically in Figure 4.

For the lowest entry speed studied, 750 m./sec., there is no
restriction on the initial flight-path angle. The vehicle can enter the
atmosphere with a horizontal velocity or one which is straight down,
but the range and entry-arc length are so small as to be negligible
when compared with the performance at higher speeds.

The steepest entry angle for an entry speed of 3500 m./sec.
is approximately 110°. At this entry angle, the pilot penalty con-
straint can be held to 1 for maximum and minimum ranges through
appropriate modulation of the o program. A critical search was not
made to verify the possibility of steeper entries because available
information concerning the entire abort-trajectory problem indicated
that re-entries for initial speeds of roughly 3500 m./sec. most likely
will occur for angles less than 110°. The range and entry-arc capa-
bilities at this speed may be of some significance for an entry at an
angle of 90° but they both decrease drastically as the entry angle be-
comes steeper. ’

For true circular entry speed, the shallowest possible entry
angle is undefined. A horizontal circular velocity, g§,= 90°, results
in a circular orbit and consequently no entry if the effects of aero-
dynamic drag are absent. Any initial flight-path angle greater than
90° will result in re-entry, and the closer this angle is to 90°, the
larger the maximum range. Similarly, a slight reduction in initial
speed and/or the presence of slight aerodynamic drag at the specified
initial altitude will lead to entry. For the solutions obtained during
this study, the initial speed was circular for the entry altitude, but
the atmospheric density, and hence drag, were defined to above this
altitude in accordance with the ARDC Model Atmosphere, 1956.

In the circular-speed-entry studies, an arbitrarily selected
shallow initial angle of 90.50° was found to lead to a maximum range
of only 138°. As the entry angle becomes steeper, the maximum
range decreases until it is only 16° for steepest permissible entry,
0o= 101.75°, The minimum ranges and the entry-arc lengths also
are markedly less for the steeper entry angles. This situation is
illustrated in Figure 5. It is significant to note that the entry arcs
for the extreme entry angles do not overlap; consequently, several
target areas will be necessary to effect successful recovery of space
vehicles re-entering at circular speed if initial flight-path angles lie
anywhere between the limits of 90° and 101, 75°.

When a vehicle travelling at supercircular speed re-enters
the atmosphere at a shallow flight-path angle, the aerodynamically
produced deceleration may be insufficient to prevent the vehicle from
rising above a specified altitude limit. Thus, the re-entry problem

95
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reduces to the determination of the shallowest initial angle that leads
to the satisfaction of the altitude restriction when the vehicle is flown
with maximum negative lift. Through the use of results of theoretical
analyses, as verified by numerical solutions, it was established that,
for an entry speed of 11, 080 m./sec. (essentially escape speed), ac-
ceptable re-entry can be accomplished for an entry angle as shallow
as 94. 71°, but not for one of 94. 55°, when the altitude limit is

150 km. In lieu of attempting to define §, more exactly within this
narrow range, 94.71° was taken as the shallowest initial flight-path
angle at this speed.

The steepest entry angle at escape speed is limited by the
pilot acceleration dose during the initial dive into the atmosphere.
This dose is critically dependent on the precise modulation of the
angle-of-attack program. For an entry angle of 99.8° an acceptable
pilot-penalty value was achieved for both minimum and maximum
range trajectories. Among the many trajectories evolved during the
study of performance for steeper initial flight-path angles, none
yielded an acceleration dose as low as 1.

Minimum-range capability for escape-velocity entries also
is limited by the pilot acceleration dose. For the entry angles
studied, this range decreased from 22° for 94.71° to 15° for 99.8°
In the case of the shallow entry angle of 94.71°, a sufficient margin
of negative lift was available to prevent the minimum-range trajectory
from leaving the atmosphere following initial entry. Of course, for
the actual shallowest permissible entry angle, which is between 94. 55°
and 94.71°, the minimum-range trajectory would include a rise to
the specified maximum altitude of 150 km. and the resulting range
would be substantially greater than 22°.

The computation of the maximum range for entries at escape
speed becomes particularly difficult as the steepness of the entry
angle increases. In these situations, the angle-of-attack program
during the first 10% or less of the total flight time must be modu-
lated extremely accurately in such a way that both the pilot-penalty
and maximum-altitude restrictions are satisfied in a manner com-
patible with maximization of the range. The total pilot penalty is
realized during roughly 2% of the flight time shortly after initial
entry into the atmosphere, and the maximum altitude restriction,
150 km., occurs later in the flight during a long interval when the
aerodynamic forces are negligible, thus complicating the solution
process. During this study, the range capability was computed both
by optimizing the performance during the entire time of flight and by
combining extremal solutions for appropriately defined portions of
the over-all trajectory. Cross checks were made to establish the
compatibility of these approaches and to ensure the relative validity
of the answers. The maximum ranges given in Table 1 represent




97

the "best" answers obtained. These ranges definitely are realizable
under the specified conditions and perhaps can be increased through
appropriate changes in the angle-of-attack program early in the
flight.

The entry arcs for escape-speed entry are shown in Figure 6.
For entry angles of 94.71° and 99. 8°, the entry arcs overlap to a
large extent indicating the feasibility of using a single recovery area.

In aborts during space missions, of course, the re-entry
velocities are not subject to close control; they will lie between broad
limits which are determined by many factors. Based on the results
given in Table 1, if the speeds may be anywhere in range from zero
up to escape and entry flight-path angles are unrestricted, recovery
facilities would have to be provided on a continuous basis throughout
possible re-entry areas. As the range of expected speeds decreases,
and as probable flight-path angles are defined, projections may be
made as to the discrete number of landing sites needed to effect suc-
cessful recovery.

V. CONCLUSIONS

As re-entry speeds increase from 750 m./sec to escape
speeds, restrictions arise on the possible re-entry flight-path angles.
The shallowness of the entry, for supercircular entry speeds, is
limited by the tendency of the vehicle to skip out; the steepness of
the entry for all except the lowest speeds, by the acceleration-dose
constraint. Stringent restrictions on initial flight-path angles which
occur for escape-speed entries are coupled with wide tolerances on
re-entry position. Re-entry speeds and flight-path angles must be
limited more than indicated by the results reported here if a small
number of landing sites is to offer a high probability of successfully
recovering aborted spacecraft.

The results of this study define extreme re-entry conditions
for the specified vehicle when subject only to pilot-acceleration-dose
and altitude constraints. The re-entry corridor may be changed if
any of the following considerations are included: the total heat and/or
heating rate is constrained; the pilot-acceleration-endurance function
includes pilot attitude dependence; or the magnitude of the angle of
attack is limited.
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